
The Impact of ISAs on Performance

Ayaz Akram and Lina Sawalha
Department of Electrical and Computer Engineering,

Western Michigan University, Michigan, USA
{ayaz.akram, lina.sawalha}@wmich.edu

ABSTRACT
Recent advances in different ISAs (instruction set architec-
tures) and the way those ISAs are implemented have revived
the debate on the role of ISAs in overall performance of a
processor. Many people believe that with the advances in
compilers and microarchitectures, the choice of ISAs does
not remain a decisive matter anymore, while others believe
that this is not the case and they claim that ISAs can still play
a significant role in the overall performance of a computer
system. Novel heterogeneous architectures exploiting the
diversity of different ISAs have already been introduced. In
this work, we evaluate applications’ behavior using different
RISC (Reduced Instruction Set Computers) and CISC (Com-
plex Instruction Set Computers) ISAs with different microar-
chitectures. We correlate performance differences for the
same applications across ISAs to certain ISA features. Our
work shows that instruction set architectures can affect the
overall performance of applications.

1. INTRODUCTION
Instruction Set Architecture (ISA) serves as an abstrac-

tion layer between the hardware and the software of a com-
puter system. Most modern ISAs can be classified into two
classes: RISC (Reduced Instruction Set Computer) and CISC
(Complex Instruction Set Computer). In this work, we ex-
plore the impact of ISAs on performance of an application
using a specific microarchitecture. We chose to study and
compare three different ISAs: 64-bit ARM (ARM-v8), x86-
64 and Alpha. We compared the behavior of the ISAs using
six different microarchitectures for different benchmarks.

Fundamentally, the distinguishing features that character-
ize the CISC and RISC ISAs are given in Table 1. Processor
technology has been in continuous evolution and changed
significantly since the introduction of RISC ISAs. Microar-
chitectures (hardware implementation of ISAs) are continu-
ously being optimized as well. As a result, the lines between
RISC and CISC ISAs are blurring. The two types of ISAs
have adopted various features of each other. CISC archi-
tectures like x86 decode complex instructions into simpler
RISC-like instructions, called micro-operations (µ-ops), to
make pipelining feasible. As Moore’s law continues to hold,
more transistors can fit in a single chip, giving RISC ar-
chitectures the opportunity to incorporate more complicated
CISC-like instructions. The present time is viewed as “post-
RISC” era, implying that the current architectures are neither
fundamentally CISC nor RISC [1].

Table 1: Features of CISC and RISC ISAs
CISC RISC
Complex instructions Simple instructions
Emphasis on hardware Emphasis on software
Can incorporate load Load and store are
and store in instructions independent instructions
Smaller code size Large code size
Variable length Fixed length
instructions instructions
High number of Limited number of
addressing modes addressing modes
Complex encoding of Simple encoding of
instructions instructions
Have specialized Avoid having
instructions specialized instructions
Limited number of Large number of
general purpose registers general purpose registers
Examples: x86, VAX, Examples: ARM, Alpha,
Z80 MIPS, SPARC, PowerPC

1.1 Overview of Instruction Sets Under Anal-
ysis

This section provides an overview of the features of the
ISAs studied in this paper: x86-64, ARMv8, and Alpha.

1.1.1 x86-64
x86-64 instruction set is a 64-bit version of x86 instruc-

tion set (CISC ISA), which is largely used in desktops and
servers, and recently in mobile devices. Originally the 64-
bit version of x86 ISA was introduced by AMD in 2000,
but it is used by both AMD and Intel currently. x86-64 is
characterized by variable length complex instructions rang-
ing from 1 byte to 15 bytes in size. Being CISC in nature,
x86-64 is considered to have higher code density than its
RISC counterparts resulting in lower static code size. In-
structions in x86 architectures are decoded into simple µ-
ops at run-time. This decoding provides higher opportunity
for instruction-level parallelism (ILP) and has become nec-
essary due to high ILP demands of modern deep pipeline
microarchitectures. x86-64 provides SIMD support through
SSE/AVX extensions. The x86-64 instruction set has six-
teen 64-bit registers for integer operations and sixteen 128-
bit registers for floating-point and SIMD operations. x86-
64 supports absolute memory addressing, sub-register ad-

1

dressing and register-to-register spills. Such features nor-
mally lead to lower register pressure [2]. x86 uses implicit
operands for various instructions. For example, the destina-
tion operand of a multiply instruction (MUL) is an implied
operand located in register AL, AX or EAX. The use of im-
plicit operands results into extra dependencies in some cases,
leading to negative impact on available parallelism [3].

1.1.2 ARMv8
The 64-bit variant of ARM architecture (ARMv8) targets

low power servers market, along with embedded systems.
Introduced in 2011, ARMv8 is a redesigned ISA when com-
pared to ARMv7. Several features of ARMv7 like predi-
cated instructions, load-multiple and store multiple instruc-
tions were removed. Overall the ISA is complex and sup-
ports more than one thousand instructions. ARMv8 has a
fixed sized 32-bit long instructions. ARMv8 supports 8 dif-
ferent addressing modes, but still remains to be a load/s-
tore architecture, i.e. instruction operands cannot be val-
ues residing in memory. It has 31 64-bit general purpose
registers. ARMv8 does not support the compact Thumb in-
struction encoding. SIMD processing is supported through
NEON extensions. In fact, NEON is mandatory for ARMv8
and no software floating-point ABI (Application Binary In-
terface) is provided. ARMv8 is compact but does not com-
pete well in code size with ISAs that have variable-length
instructions [4]. Unlike ARMv7, an integer division instruc-
tion has been added. ARMv8 instructions are supposed to
boost performance by 15% to 20% in comparison to ARMv7
instructions [5].

1.1.3 Alpha
Designed by Digital Equipment Corporation in the early

1990s, Alpha is another 64-bit RISC ISA. Alpha was de-
signed for high-performance systems and was simple to im-
plement. Alpha has fixed size instructions; 32 bits long with
six different instruction formats. It supports 32 integer and
32 floating point registers, each register is 64 bits long. It
does not support any compressed ISA extension. Alpha fol-
lows an imprecise floating-point trap model. Alpha defines
that exception flags and default values, if needed, should
be provided by software routines. It requires the insertion
of trap barrier instructions after most of the floating-point
arithmetic instructions. To support SIMD operations, an ex-
tension was added to the ISA, called Motion Video Instruc-
tions (MVI) [6]. MVI is composed of simple instructions
that operate on integer data types. When Compaq purchased
DEC in the late 1990s, they discontinued the development of
Alpha in favor of Intel’s Itanium. As a result Alpha ISA has
died out now. Last implementation of Alpha was developed
in 2004.

2. RELATED WORK
Most of ISA studies [7, 8, 9, 10] are old and do not include

state-of-the-art developments in ISAs and their implementa-
tions. There are other studies, which either focus on only one
ISA [11] or target only particular ISA features [12]. Two re-
cent ISA studies performed by Venkat and Tullsen [2], and
Blem et al. [13] have conflicting claims regarding the role
of ISA in performance of a processor. Venkat and Tullsen
[2] suggest that ISAs can affect performance significantly

based on their features. On the other hand, Blem et al. [13]
conclude that microarchitecture is the main reason for per-
formance differences across different platforms and ISA ef-
fects are indistinguishable. Our work focuses on checking
the validity of such claims by adopting a different method-
ology than what they used.

In 1990’s Bhandarkar and Clark studied different imple-
mentations of MIPS, VAX, x86 and Alpha ISAs [7, 8]. They
concluded that RISC processors have a performance edge
over CISC processors. CISC ISAs required more aggres-
sive microarchitecture optimizations to overcome the perfor-
mance bottleneck. Isen et al. [9] performed a comparison of
performance between Power5+ and Intel Woodcrest, finding
that both match in performance. They indicated that with
the aggressive microarchitectural techniques CISC ISAs can
have similar performance as RISC ISAs.

In a recent study Blem et al. [14] provide a detailed anal-
ysis of x86 and ARM ISAs. The authors claim that the dif-
ferent ISAs are optimized for different performance gains
and no ISA is fundamentally more energy efficient than the
other. Blem et al. suggest that the primary reason for perfor-
mance differences is microarchitecture. Later, they included
MIPS ISA and some other hardware test platforms in their
study to conclude that the previous findings still hold true
[13].

Weaver and Mckee [12, 15] studied the effect of ISA on
code density. Their study includes more than 20 ISAs (in-
cluding x86_64, ARM64 and Alpha). Their work finds x86
to be one of the most dense ISAs. They also found that code
density is mostly affected by: number of registers, instruc-
tion length, hardware divisors, the existence of a zero regis-
ter, number of operands, etc.

Duran and Rico used graph theory techniques to quantify
the impact of ISAs on superscalar processing [16]. Rico et
al. also studied the impact of x86 specifically on superscalar
processing [3]. They quantitatively analyzed three sources
of limitations on the maximum achievable parallelism for
x86 processors: implicit operands, memory address compu-
tations and condition codes. Lopes et al. [11] analyzed x86
instruction set and proposed a way to remove repetitive/un-
necessary instructions, to make space for new instructions to
be added to the ISA, while still supporting legacy code. Ye
et al. [10] characterized the performance of different x86-
64 applications and compared them to those of 32-bit x86
applications. They showed that for integer benchmarks, 64-
bit binaries perform better than 32-bit ones by an average of
7%. However, this is not true for all benchmarks, as some
perform slower in 64-bit mode. They show that memory-
intensive benchmarks, which use long and pointer data types
extensively suffer from performance degradation in a 64-bit
mode.

Lopes et al. evaluated different compact ISA extensions
including Thumb2 and MicroMIPS [17]. They also pro-
posed SPARC-16, a 16-bit extension to SPARC processor.
Lee [18] provides an overview of various multimedia exten-
sions for different ISAs (e.g. MAX, MMX, VIS). Similarly,
Slingerland and Smith [19] surveyed existing multimedia in-
struction sets and examined the mapping of their functional-
ity to a set of computationally important kernels. Bartolini
et al. [20] analyzed various existing instruction set exten-

2

sions for cryptographic applications. They reviewed the as-
sociated benefits and limitations of such extensions. Ing and
Despain [21] researched instruction sets designed for appli-
cation specific needs and have a tighter integration with the
underlying hardware. They outlined automatic instruction
set generation for these application specific designs. This
technique is called Automatic Synthesis of Instruction Set
Architectures (ASIA). It outperforms manually designed in-
struction sets. However, it has some limitations (e.g. the
need of hardware resources specifications by the designer).

DeVuyst et al. [22] developed a mechanism to migrate
program execution on cores of different ISAs with mini-
mum cost. Based on this execution migration methodology,
Venkat and Tullsen [2] have developed a heterogeneous ISA
CMP (chip multiprocessor) by exploiting the diversity of
three ISAs: Thumb, x86-64 and Alpha. Their chosen hetero-
geneous architecture results in 21% increased performance
compared to the best single-ISA heterogeneous architecture,
in addition to reduced energy and energy delay product. The
authors exploited the energy efficiency of ARM’s Thumb
ISA, the high performance of x86-64 and the simplicity of
Alpha to achieve better performance and energy efficiency
as compared to a single-ISA heterogeneous CMP.

Celio et al. [23] compared RISC-V [24], a new research
ISA, with ARMv7, ARMv8, IA-32 and x86-64 ISAs us-
ing SPEC-INT2006 benchmarks. They found that RISC-V
(RV64G) instruction count is within 2% of the µ-ops on x86-
64. The compressed version of RISC-V (RV64GC) is found
to be the densest ISA out of the studied ones. Moreover, they
found that effective instruction count of RISC-V can be re-
duced by 5.4% on average by fusing instructions at run time
(macro-op fusion). The authors claim that using microarchi-
tectural techniques, such as macro-op fusion, can make one
ISA targeted for both high-end and low-end processors.

Steve Terpe researched the historical “RISC vs CISC” de-
bate in [25]. The author collected viewpoints of computer
scientists Robert Garner, Peter Capek and Paul McJones on
this topic. The findings suggest that the Moore’s law ended
the RISC vs CISC controversy. Terpe concluded that it does
not really matter for an ISA to be RISC or CISC or a com-
bination of both. Instead, other technology developments
(like caching, pipelining, register renaming) play more sig-
nificant role towards determining the overall performance of
a system. Jakob [26] argues that ISA still matters for per-
formance. He specifically studied AArch64 (ARM-v8) and
x86-64 cases to prove his point. Cortex-A57 and A53 when
run with AArch64 code can achieve 10% performance im-
provement over AArch32 due to less register spills and more
optimized instruction set in case of AArch64. Similarly, per-
formance improvement of 5% to 10% was observed by the
move from x86-32 to x86-64 due to better register alloca-
tion and overall cleaner instruction set. Jon Stokes [27] as-
serts that current architectures embody a variety of design
approaches, and that in this post-RISC era it is not sensible
to keep the RISC and CISC division intact. Instead, current
platforms should be evaluated on their own merits.

3. METHODOLOGY
To compare and analyze the behavior of ISAs, we need

to: keep all ISA-independent microarchitectural features the

same across all ISAs for all runs, try a diverse set of mi-
croarchitectural configurations close to real implementations
of the studied ISAs, keep the compilation infrastructure the
same for all ISAs, and study the same phases of execution
across all ISAs. We used gem5 [28] simulator for our ex-
periments, which ensured that we were analyzing the be-
havior of different ISAs using the exact same microarchi-
tectures. gem5 isolates the underlying simulated hardware
(microarchitecture) from ISAs [29], making it a good fit for
our study. We modified the source code of gem5 to make x86
instructions to µ-ops decoding more realistic.

We chose a diverse set of microarchitectures for our study,
including three OoO (out-of-order) and three IO (in-order)
cores. The simulated cores are based on Intel Haswell (OoO),
Intel Atom (IO), ARM Cortex A15 (OoO), ARM Cortex A8
(IO), Alpha 21264 (OoO) and Alpha 21164 (IO). Detailed
configurations of the selected microarchitectures are shown
in Table 2.

We used C/C++ benchmarks of SPEC-CPU2006 bench-
marks [30] and embedded benchmarks from MiBench [31]
suite in our study, compiled for each ISA. We used gnu gcc
version 4.8.5 to compile these benchmarks for x86 and ARM
and 4.3.5 for Alpha, instead of using any vendor-specific
compiler, to control compiler optimizations used. We built
the gcc cross compilers using crosstools-ng version 1.22. While
SPEC-CPU2006 benchmarks do not have SIMD code, the
auto-vectorization feature of gcc can result in SIMD instruc-
tions in the compiled binary. We did not disable the auto-
vectorization feature of the compiler.

Following is a brief summary of the methodology adopted
to carry out all the experiments: We used simpoint tool [32]
with x86 binaries of SPEC-CPU2006 benchmarks and came
up with 5 simpoint intervals each of approximately 500 mil-
lion x86 instructions. To map these x86 phases to other
ISAs, we marked critical functions of the benchmarks. We
also profiled SPEC-CPU2006 benchmarks using gprof [33]
tool to identify critical functions. Four functions for each
program were chosen based on gprof output: two where the
program spent the most of the time and the other two which
were called the highest number of times during the execu-
tion of the program. We inserted gem5 pseudo instructions
in all four functions to mark the functions for each bench-
mark and ran the marked binaries to calculate the total num-
ber of marked-function calls at the starting and ending point
of each phase for x86. This call count was used to iden-
tify the exact start point and end point of simulation for
each phase on x86 and other ISAs. Marking critical func-
tions provides a better opportunity for accurate mapping as
there is a higher chance that one of these functions will be
executed close to the phase boundary. In case of embedded
benchmarks, we ran the entire benchmarks for all ISAs. We
measured different microarchitectural performance statistics
like cache misses, branch mispredictions, blocks of different
stages etc. and some microarchitecture independent statis-
tics like register dependency distance and instruction mixes
for each phase for each ISA. All statistics were measured for
windows of 50 000 instructions over time. Finally, we com-
pared the differences in performance for various ISAs across
these phases of execution.

3

Table 2: Target Configurations
Parameter Haswell A15 Alpha21264 Atom A8 Alpha21164
Pipeline OoO OoO OoO IO IO IO
Core Clock 3.4 GHz 2 GHz 1.2 GHz 1.6 GHz 800 MHz 500 MHz
Front end width 6 µ-ops 3 µ-ops 4 µ-ops 3 µ-ops 2 µ-ops 4 µ-ops
Back end width 8 µ-ops 7 µ-ops 4 µ-ops 3 µ-ops 2 µ-ops 4 µ-ops
Instruction queue 60 entries 48 entries 40 entries 32 entries 32 entries 32 entries
Reorder buffer 192 entries 60 entries 80 entries N/A N/A N/A
Number of stages 19 15 7 13 13 7
Load/Store Queue 72/42 entries 16/16 entries 32/32 entries 5 entries 12 entries 5 entries
Physical INT/FP Registers 168/168 90/256 80/72 N/A N/A N/A
Cache line size 64 64 64 64 32 32
L1D-$ size 32KB 32KB 64 KB 24KB 32KB 8KB
L1D-$ associativity 8 way 2 way 2 way 6 way 4 way 1 way
L1D-$ latency 4 cycles 4 cycles 3 cycles 3 cycles 2 cycles 3 cycles
L1I-$ size 32KB 32KB 64 KB 32KB 32KB 8KB
L1I-$ associativity 8 way 2 way 2 way 8 way 4 way 1 way
L1I-$ latency 4 cycles 2 cycles 3 cycles 2 cycles 2 cycles 2 cycles
L2-$ size 256KB 2MB 2MB 512KB 256KB 96KB
L2-$ associativity 8 way 16 way 16 way 8 way 8 way 3 way
L2-$ latency 12 cycles 20 cycles 12 cycles 12 cycles 6 cycles 10 cycles
L3-$ size 8MB N/A N/A N/A N/A 4MB
L3-$ associativity 16 way N/A N/A N/A N/A 1 way
L3-$ size 8MB N/A N/A N/A N/A 4MB
L3-$ latency 36 cycles N/A N/A N/A N/A 10 cycles
DRAM latency 57 ns 81 ns 60 ns 85 ns 65 ns 253 ns
DRAM bandwidth 25.4 GB/s 25.4 GB/s 25.4 GB/s 25.4 GB/s 25.4 GB/s 1.6 GB/s
Branch Predictor (Global Table/) Tournament Tournament Tournament Tournament Tournament 2-Bit Counter
Local Table sizes) (4096/4096) (4096/1024) (4096/1024) (4096/1024) (512/512) (2048 entries)

Branch target buffer 4096 entries 2048 entries 2048 entries 128 entries 512 entries 512 entries
Return address stack 16 entries 48 entries 32 entries 8 entries 8 entries 12 entries

Note: N/A: Not Available/Applicable, OoO:Out-Of-Order, IO: In-Order

4. RESULTS AND ANALYSIS
We considered various microarchitecture dependent and

independent statistics to observe the differences across ISAs.
This section also shows the average performance of ISAs on
different microarchitectures and discusses few examples of
the observed differences across ISAs.

Figures 1 and 2 show the cycle counts for ARM and Al-
pha ISAs (relative to x86) for out-of-order (OoO) and in-
order (IO) cores respectively. In case of SPEC-CPU2006
benchmarks, the cycle counts are cumulative cycles for all
studied phases. On average, ARM takes the least number of
cycles for all kinds of benchmarks on out-of-order cores. As
the figures show, the ISAs behave differently for the various
benchmarks and microarchitectures. For example, gobmk
always takes less number of cycles on Alpha than x86 be-
cause x86 suffers from increased number of branch mispre-
dictions. However, perlbench always takes less number of
cycles on x86 than Alpha as Alpha suffers from higher reg-
ister pressure in this case. In case of hmmer, ARM takes a
larger number of cycles than x86 on Haswell-like core, but
it takes less number of cycles than x86 on other out-of-order
cores. In case of in-order cores, the difference in execution
cycles for x86 and ARM is reduced significantly for hmmer.
Similarly, the average difference is reduced on IO cores.

Figures 3 to 7 show various microarchitecture-independent
metrics. Figure 3 shows the dynamic instruction counts for
Alpha and ARM ISAs normalized to x86 instructions. Fig-
ure 4 shows the dynamic µ-op counts for Alpha and ARM
ISAs normalized to x86 µ-op counts for all benchmarks. As
the figures show, the final number of dynamic µ-ops depends

on the ISA, and x86 has the most number of µ-ops in most
cases. Figure 5 shows the number of different types of oper-
ations for all ISAs relative to x86. As the figures show, the
total number of µ-ops of a particular type depends on the
ISA as well. Figure 6 shows the average probability of regis-
ter dependency distance (the number of instructions between
the instruction that writes a register and the instruction that
reads that register) [34]. Figure 7 shows the average values
for degree of use of registers (number of instructions that
consume the value of a register once it is written) [34]. x86
has the highest degree of use of registers which results into
extra instruction queue blockings in out-of-order cores for
some cases as compared to other ISAs. To better understand
specific reasons for the differences among ISAs we studied
each benchmark separately. We show some examples below.

bitcnts is an embedded benchmark that counts the number
of bits in an array of integers using different methods. x86
takes the most number of cycles to execute this benchmark
on out-of-order cores, but on in-order cores Alpha takes the
most number of cycles. Alpha takes the most number of µ-
ops to execute this benchmark as well. Another interesting
thing to observe is the behavior of this benchmark over time.
Figure 8 shows the number of cycles taken to execute each
interval of 50,000 instructions for all ISAs on a Haswell-like
core. As shown in the figure, for the first phase (almost until
18000 intervals or 900 million instructions), x86 takes al-
most the same number of cycles as taken by the other ISAs
for each interval. However, for all the following phases x86
takes a larger number of cycles in comparison to the other
ISAs because of increased dependent operations. Listing 1

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b
as

ic
_m

at
h

b
it

cn
ts

d
ij

ks
tr

a

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_c

h
ic

ke
n

go
b

m
k

o
m

n
et

p
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_i
n

A
vg

.

A
vg

_n
o

_
m

cf

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

C
yc

le
 c

o
u

n
ts

 r
e

la
ti

ve
 t

o
 x

8
6

 Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

INT-SPEC CPU2006EMBEDDED FP-SPEC CPU2006

Figure 1: Cycle counts normalized to x86 for OoO Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.C
yc

le
 c

o
u

n
ts

 r
e

la
ti

ve
 t

o
 x

8
6

Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 2: Cycle counts normalized to x86 for IO Cores

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

b
a

s
ic

_
m

a
t
h

b
it

c
n

t
s

d
ij

k
s
t
r
a

jp
e

g

q
s
o

r
t

s
t
r
in

g
_

s
e

a
r
c
h

t
y

p
e

s
e

t

A
v

g
.

b
z
ip

_
c
h

ic
k

e
n

g
o

b
m

k

o
m

n
e

t
p

p

p
e

r
lb

e
n

c
h

h
m

m
e

r

li
b

q
u

a
n

t
u

m

m
c
f_

in

A
v

g
.

lb
m

m
il

c

n
a

m
d

p
o

v
r
a

y

s
o

p
le

x

s
p

h
in

x

A
v

g
.

In
s
t
s
.

 r
e

la
t
iv

e
 t

o
 x

8
6

Arm Alpha

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 3: Instruction counts normalized to x86

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b
a

s
ic

_
m

a
th

b
it

c
n

ts

d
ij

k
s
tr

a

jp
e

g

q
s
o

rt

s
tr

in
g

_
s
e

a
r
c
h

ty
p

e
s
e

t

A
v

g
.

b
z
ip

_
c
h

ic
k

e
n

g
o

b
m

k

o
m

n
e

tp
p

p
e

r
lb

e
n

c
h

h
m

m
e

r

li
b

q
u

a
n

tu
m

m
c
f_

in

A
v

g
.

lb
m

m
il

c

n
a

m
d

p
o

v
r
a

y

s
o

p
le

x

s
p

h
in

x

A
v

g
.

M
ic

r
o

-o
p

s

r
e

la
ti

v
e

 t
o

 x
8

6

Arm Alpha

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 4: µ-op counts normalized to x86

0

0.5

1

1.5

lo
ad

s
re

la
ti

ve

to
 x

8
6

Arm x86 Alpha

0

0.5

1

st
o

re
s

re
la

ti
ve

to

 x
8

6

0

0.5

1

1.5

b
ra

n
ch

es
 r

el
at

iv
e

to
 x

8
6

0

0.5

1

b
as

ic
_m

at
h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

es
e

t

A
vg

.

b
zi

p

go
b

m
k

o
m

n
et

p
p

p
e

rl
b

en
ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_i
n

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

o
th

er
s

re
la

ti
ve

to
 x

8
6

Figure 5: Types of µ-ops normalized to x86

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

p
ro

b
. r

e
gi

st
e

r
d

e
p

e
n

d
e

n
ce

 <
=

1
6

Arm x86 Alpha

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 6: Register dependency distance for each ISA

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.A
vg

.
d

e
gr

e
e

 o
f

u
se

 o
f

re
gi

st
e

rs

Arm x86 Alpha

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 7: Degree of use of registers for each ISA

shows an example of assembly code that leads to reduced
performance on aggressive out-of-order cores for x86 com-
pared to the other ISAs for bitcnt.

Listing 1: Example from bitcount function

x86:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
mov %rdx ,% r a x // ‘i’ in rdx, dependent operation
and $0 x f f 0 0 f f ,% edx // dependent operation
and $0 x f f 0 0 f f 0 0 ,% eax // dependent operation
s a r $0x8 ,% r a x // dependent operation
add %rdx ,% r a x // dependent operation

ARM:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
movk x0 , #0 xf f00 , l s l #16 // independent operation
movk x3 , #0 x f f , l s l #16 // independent operation
and x3 , x1 , x3 // ‘i’ in x1, dependent operation
and x0 , x1 , x0 // dependent operation
add x0 , x3 , x0 , l s r #8 // dependent operation

Alpha:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
z a p n o t t1 , 0 xa , v0 // ‘i’ in t1, dependent operation
z a p n o t t1 , 0 x5 , t 1 // dependent operation
s r a v0 , 0 x8 , v0 // dependent operation
addq v0 , t1 , v0 // dependent operation

This code snippet is taken from a function that executes
repeatedly inside a loop. The execution of this function starts
approximately after 900 million instructions; the execution
phase involving this function is circled in Figure 8. As can
be seen in the Listing 1, there are more dependent opera-
tions in case of x86. This piece of code calculates the final
value of a variable i. One source of more dependent op-
erations is the first mov operation in x86, which copies the

initial value of variable ‘i’ from reg %rdx to %rax. This
copying is needed to perform two different ‘and’ operations
with variable i, as the value of the register (%rdx) containing
i will be modified after first ‘and’ operation due to nature of
x86 ISA. Since, there are more dependent operations on i in
x86, this results into congestion in instruction queue on the
out-of-order cores as our results indicate.

For dijkstra benchmark, Alpha suffers from high regis-
ter pressure and has a greater number of load operations as
compared to the other ISAs as shown in Figure 5. This leads
to lower performance on most of the microarchitectures for
Alpha. One possible reason for higher register pressure on
Alpha in some cases (including dijkstra) is less flexible ad-
dressing modes and instruction formats as compared to other
ISAs.

qsort sorts a large array of strings using quicksort algo-
rithm. We modified qsort to remove all printings to focus
on only sorting related code. x86 takes the most number of
cycles on OoO cores, while Alpha takes the most number
of cycles on IO cores, mainly due to higher µ-op/instruction
count for Alpha. Figure 9 shows that there are two major
phases of execution for this benchmark. As pointed in the
figure, all ISAs exhibit similar performance for the first phase.
However, during the second phase, x86 spends the highest
number of cycles for each window of instructions.

bzip2 is a SPEC-CPU2006 integer benchmark, which per-
forms the compression and decompression of an input file.
While Alpha takes the most number of cycles on a Haswell-
like microarchitecture and less on the other out-of-order cores
on average, this behavior is not true for all phases. For
example, in one of the phases Alpha always performs the
worst. There are two important functions in this benchmark;
mainGtU and mainSort. They both use unsigned 32-bit inte-
gers to access arrays. In case of Alpha, extra instructions are

6

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1E+09 2E+09 3E+09 4E+09 5E+09 6E+09

C
y
c
le
s

Instructions

ARM x86 Alpha

phase involving bitcount function

Figure 8: Cycles over windows of 50k inst. for bitcnts

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 50000000 100000000 150000000 200000000 250000000

C
y
c
le
s

Instructions

ARM x86 Alpha

starting point of phase where
ISAs behave differently

Figure 9: Cycles over windows of 50k inst. for qsort

required to clear the upper 32 bits of the index variables as
pointed out in Listing 2. The particular phase, in which Al-
pha performs the worst, uses these functions frequently. The
same behavior was also observed by Celio et al. in [23].

In case of gobmk, x86 suffers from a high number of branch
mispredictions in all out-of-order cores and thus takes a larger
number of cycles in comparison to the other ISAs. Interest-
ingly, Alpha and x86 take the same number of cycles on one
of the 5 studied phases, even in case of out-of-order cores.
During this particular phase, Alpha takes almost 12% more
dynamic µ-ops as compared to x86.

Listing 2: Example from mainGtU function
Used Index Variables:

UInt32 i1, UInt32 i2 / /32 − b i t u n s i g n e d

C Code:

c1 = b l o c k [i 1] ; c2 = b l o c k [i 2] ;
i f (c1 != c2) r e t u r n (c1 > c2) ;

x86:

l e a 0x1(% r12) ,% eax
l e a 0x1(% rbp) ,% edx
movzbl (%rbx ,% rax ,1) ,% eax
cmp %al ,(% rbx ,% rdx , 1)
j n e 402987 <mainGtU+0x37>

ARM:

add w6 , w19 , #0 x1
add w0 , w1 , #0 x1
l d r b w6 , [x2 , x6]
l d r b w0 , [x2 , x0]
cmp w6 , w0
b . ne 4029 a0 <mainGtU+0x50>

Alpha:

z a p n o t a0 , 0 xf , t 0 // extra inst. to clear upper 32 bits
z a p n o t a1 , 0 xf , t 1 // extra inst. to clear upper 32 bits
addq s2 , t0 , t 0
addq s2 , t1 , t 1
ldbu t3 , 0 (t 0)
l dbu t2 , 0 (t 1)
cmpeq t3 , t2 , t 0
cmpul t t2 , t3 , v0
beq t0 ,120001 b28 <mainGtU+0x78>

Like dijkstra, perlbench is another benchmark where Al-
pha suffers from high register pressure. perlbench has a sig-
nificant number of stack operations in the generated code
for all ISAs due to benchmark’s nature. However, Alpha has
significantly larger number of stack operations as compared
to the other ISAs. For example, in one of the most used

functions of this benchmark S_regmatch, Alpha has approx-
imately 39% more stack operations as compared to the other
ISAs. This results into lower performance of Alpha on all
phases in comparison to the other ISAs.

Listing 3: Example from P7Viterbi function
C Code:

i f ((s c = i p [k−1] + tp im [k−1]) > mc [k])
mc [k] = sc ;

x86:

mov (%r8 ,% rax ,4) ,% r15d //complex addr. mode
add 0x0(%r13 ,% rax ,4) ,% r15d //complex addr. mode
cmp %ecx ,% r15d
cmovge %r15d ,% ecx
mov %ecx , 0 x4(% rdx)

ARM:

add x5 , x5 , #0 x4
l d r w11 , [x1 , x5]
l d r w4 , [x26 , x5]
add w11 , w11 , w4
cmp w11 , w12
c s e l w11 , w11 , w12 , ge
s t r w11 , [x6 , # 4]

Alpha:

l d q t3 , 1 6 0 (sp)
addq t3 , t9 , t 2
l d l t1 , 0 (t 2)
l d l t0 , 0 (a5)
a d d l t1 , t0 , t 1
cmple t1 , t3 , t 2
cmovne t2 , t3 , t 1
s t l t1 , 4 (t 1 0)

In case of hmmer, x86 takes the minimum number of cy-
cles on Haswell-like core, but fails to do so on other out-of-
order cores. This benchmark has a high number of ARM and
Alpha µ-ops as compared to x86. P7Viterbi is a function
where hmmer spends most of the time and contains many
‘if’ statements around store operations. An example of such
statements with corresponding assembly instructions for all
ISAs is shown in Listing 3. As can be seen in the Listing 3,
x86 makes use of complex addressing modes resulting into
less number of instructions (and also µ-ops) as compared
to the other ISAs. Even though x86 has a lower number of
total µ-ops, on less aggressive out-of-order cores there is
more congestion for x86 in the instruction queue resulting
into lower performance on A15-like and Alpha21264-like
cores.

Figure 10 shows the behavior of ISAs on one of the phases

7

40000

60000

80000

100000

120000

140000

0 50000000 100000000 150000000 200000000 250000000

C
y
c
le
s

Instructions

ARM x86 Alpha

Phase 2Phase 1

Figure 10: Cycles over windows of 50k inst. for a phase of libquantum

0

100000

200000

300000

400000

500000

600000

0 50000000 100000000 150000000 200000000 250000000

C
y
c
le
s

Instructions

ARM x86 Alpha

28300000

Change of
behavior of ISAs
across phases

Figure 11: Cycles over windows of 50k inst. for a phase of milc

of libquantum. There are two main sub-phases in this phase,
which are circled in Figure 10. While on Phase 1 all ISAs
show similar behavior, on Phase 2 the behavior of ISAs is
very different from each other.

mcf is a memory intensive benchmark and Alpha takes
a larger number of cycles to execute this benchmark. It
has approximately 40% more instruction queue full events
and 28% more ROB full events compared to ARM on a
Haswell-like core. An example of extra dependency in pri-
mal_bea_mpp function function (the most critical function)
in case of Alpha is shown in Listing 4. x86 makes use of
complex addressing mode and results into one less instruc-
tion compared to the other ISAs. Alpha also suffers from
higher register pressure as it has a higher number of loads
and stores as shown in Figure 5. An example of higher reg-
ister pressure is observed at the end point of primal_iminus,
the second most called function, where Alpha restores (or
loads) double the number of callee-saved registers compared
to the other ISAs.

lbm is another memory intensive benchmark, where x86
takes a larger number of cycles compared to the other ISAs.
ARM and Alpha have significantly less number of µ-ops
compared to x86. Listing 5 shows an example from the most
critical function, LBM_perf- ormStreamCollide. Since this
code contains several additions with many intermediate sums,
this piece of code requires several registers, x86 spills some
registers onto stack and later use them for addition. This
finding is similar to Venkat et al. findings [2]. Although x86
takes a high number of cycles compared to the other ISAs
on average, all ISAs take a similar number of cycles for one
of the phases.

Listing 4: Example from primal_bea_mpp function
C Code:
perm [n e x t]−>a = a r c ;

x86:

mov 0 x6b4d60 (,% r10 ,8) ,% r s i
mov %rax ,(% r s i)

Alpha:

s8addq t8 , s1 , t 2
l d q t0 , 0 (t 2)
s t q t5 , 0 (t 0)

ARM:

l s l x5 , x10 , #3
l d r x9 , [x7 , x5]
s t r x0 , [x9]

milc simulates four dimensional lattice gauge theory. x86
takes the most number of cycles on all configurations. An
example of why it might have led to more µ-ops on x86
as compared to the other ISAs is shown in Listing 6. The
Listing shows the code from the function where it spends
most of the time, mult_su3_na. One of the main sources of
extra instructions and dependent operations is two copying
operations, which are pointed out in Listing 6. The registers
containing values of ai and ar will not retain their values
after performing multiplication in the 3rd line of the C/C++
code, so these are copied to two other registers to use their
values for multiplication operations shown in line 4 of the
C/C++ code. While on average Alpha is doing better than
x86 this is not true on all phases. The cycles for one of the
5 phases is shown in Figure 11. There are two main sub-
phases in this phase as shown in the figure. x86 and Alpha
take the most number of cycles in those phases alternatively.

Listing 5: Example from LBM_performStreamCollide
C/C++ Code:

rho = + SRC_C (s r c G r i d) + SRC_N (s r c G r i d)
+ SRC_S (s r c G r i d) + SRC_E (s r c G r i d)
+ // this continues

// a total of 19 additions are performed

x86:

movsd (% r d i) ,%xmm7
and $0x2 ,% edx
movsd 0x8(% r d i) ,%xmm13
movapd %xmm7,%xmm0 // final sum in xmm0
movsd %xmm7, 0 x20(% r s p)
movsd 0x10(% r d i) ,%xmm7 // xmm7 loaded
addsd %xmm13,%xmm0
movsd 0x18(% r d i) ,%xmm15
movsd %xmm7,(% r s p) // xmm7 pushed to stack
movsd 0x20(% r d i) ,%xmm4
movsd 0x28(% r d i) ,%xmm3
addsd (% r s p) ,%xmm0 // xmm7 on stack + xmm0
movsd %xmm4, 0 x8(% r s p)
....... // same pattern follows

ARM:

l d r d10 , [x0]
l d r d23 , [x0 , # 8]
l d r d22 , [x0 , # 1 6]
l d r d25 , [x0 , # 2 4]
f add d9 , d10 , d23 // final sum in d9
l d r d24 , [x0 , # 3 2]
f add d9 , d9 , d22
....... // same pattern follows; no stack additions

Alpha:

8

l d t $ f10 , 0 (s1)
s t t $ f10 , 1 6 8 (sp)
l d t $ f15 , 8 (s1)
l d t $ f11 , 1 6 (s1)
l d t $ f13 , 2 4 (s1)
l d t $ f12 , 3 2 (s1)
l d t $ f20 , 4 0 (s1)
l d t $ f14 , 4 8 (s1)
l d t $ f22 , 5 6 (s1)
l d t $ f23 , 6 4 (s1)
a d d t $ f10 , $ f15 , $ f10 // final sum in f10
....... // same pattern follows; no stack additions

On namd, x86 takes a higher number of µ-ops compared
to the other ISAs, which causes x86 to take the most number
of cycles to execute this benchmark on all cores. Generally,
in floating-point benchmarks, x86 results in a higher number
of µ-ops which hurts its performance in comparison to the
other ISAs. On povray, Alpha takes the highest number of
cycles for most of the configurations.

As shown in the examples above, ISAs can affect the per-
formance of a benchmark depending on the microarchitec-
ture. Next, we have a summary of findings based on the
aformentioned examples and results.

Listing 6: Example from mult_su3_na function
C/C++ Code:

a r =a−>e [i] [0] . r e a l ; a i =a−>e [i] [0] . imag ;
b r =b−>e [j] [0] . r e a l ; b i =b−>e [j] [0] . imag ;
c r = a r ∗ br ; t = a i ∗ b i ; c r += t ;
c i = a i ∗ br ; t = a r ∗ b i ; c i −= t ;

x86:

movsd (% r d i) ,%xmm3 //‘ar’ in xmm3
movsd 0x8(% r d i) ,%xmm4 //‘ai’ in xmm4
movsd (% rbx) ,%xmm0
add $0 x30 ,% r d i
movsd 0x8(% rbx) ,%xmm2
movapd %xmm3,%xmm1 //‘ar’ copied to xmm3
movapd %xmm4,%xmm5 //‘ai’ copied to xmm5
mulsd %xmm0,%xmm1
mulsd %xmm2,%xmm5
mulsd %xmm4,%xmm0
mulsd %xmm3,%xmm2

ARM:

l d r d3 , [x0]
l d r d2 , [x0 , # 8]
l d r d5 , [x1 , # 8]
l d r d0 , [x1]
fmul d16 , d2 , d5
fmul d7 , d3 , d5
fmadd d16 , d3 , d0 , d16
fnmsub d7 , d2 , d0 , d7

Alpha:

l d t $ f12 , 0 (s0)
l d t $ f13 , 8 (s0)
l d t $ f26 , 0 (s2)
l d t $ f27 , 8 (s2)
mul t $ f12 , $ f27 , $ f11
mul t $ f13 , $ f26 , $ f10
mul t $ f12 , $ f26 , $ f12
mul t $ f13 , $ f27 , $ f13

Summary of the Findings:

1. On average, ARMv8 outperforms other ISAs on sim-
ilar microarchitectures, as it offers better instruction-

level parallelism and has a lower number of dynamic
µ-ops compared to the other ISAs for most cases.

2. The average behavior of ISAs can be very different
from their behavior for a particular phase of execution,
which agrees with Venkat and Tullsen’s findings [2].

3. The performance differences across ISAs are signifi-
cantly reduced in IO cores compared to OoO cores.

4. On average, x86 has the highest number of dynamic
µ-ops. This agrees with previous findings when com-
pared to Alpha [2]. There are few examples where Al-
pha exceeds x86 in the number of µ-ops, but ARMv8
always has a lower or equal number of µ-ops compared
to x86.

5. x86 seems to have over-serialized code due to ISA lim-
itations, such as implicit operands and overlapping source
and destination registers, as was also observed by Rico
et al. [3]. x86 has the highest average degree of use of
registers.

6. The total number of L1-instruction cache misses is very
low across all ISAs for the studied cores. This infers
that the sizes of L1 instruction caches used are suffi-
cient to eliminate any ISA bottlenecks related to code
size for the studied benchmarks.

7. Based on our results, the number of L1-data cache
misses are similar across all ISAs in case of IO cores,
but the numbers can vary significantly in case of OoO
cores. One possible explanation for this behavior is be-
cause timing of cache accesses for OoO cores does not
match that for all ISAs (based on the dependencies in
the dynamic instruction sequence for that ISA), which
can lead to a different number of L1 data cache misses.

8. On average, the number of branch mispredictions are
similar across ISAs for all of the microarchitectures.
However, there are few exceptions like gobmk, qsort
and povray. These benchmarks having a high number
of branch operations, and differing in the exact number
of branch operations across the ISAs (Figure 5), can
explain the aforementioned behavior.

9. From our study, we found that µ-ops to instructions
ratio on x86 is usually less than 1.3. This was also
observed by Blem et al [13]. However, overall in-
structions count and mixes are ISA-dependent, which
contradicts Blem et al’s [13] conclusion of instruction
counts being independent of ISAs.

10. Changing microarchitecture significantly affects per-
formance more than changing ISA on a particular mi-
croarchitecture. For example, going from a Haswell-
like core to an A15-like core affected performance more
than an ISA change did on one of the two cores.

11. According to Blem et al’s study [13], performance dif-
ferences on studied platforms are mainly because of
microarchitectures. We observed performance differ-
ences on exactly similar microarchitectures, which me-
-ans that ISAs are responsible for those performance

9

differences. Moreover, since performance differences
across ISAs vary for different microarchitectures, we
can conclude that the behavior of an ISA depends on
the associated microarchitecture, but they certainly af-
fect performance.

5. CONCLUSION
Modern developments in ISAs and their implementations,

in addition to the conflicting claims regarding the role of
ISAs in performance of a processor, demand for a review
of this historical debate. In this work, we studied the ef-
fect of three ISAs on performance of many benchmarks us-
ing six microarchitectures. We related the observed perfor-
mance differences across ISAs to the generated assembly
code for each ISA. Our results indicate that ISAs can affect
performance and the amount of effect differs based on the
microarchitecture. Moreover, programs often exhibit phases
of execution, which can be more affine to one ISA than the
other. We also observed that the difference in performance of
ISAs is insignificant for IO cores, compared to OoO cores.

Acknowledgement
The authors would like to thank Brandon Arrendondo and
Tyler Bayne for their help with this work and the anonymous
reviewers for their valuable feedback.

6. REFERENCES
[1] “risc vs. cisc.” https://cs.stanford.edu/people/eroberts/

courses/soco/projects/risc/risccisc/. [acc. 6/1/2017].

[2] A. Venkat and D. M. Tullsen, “Harnessing ISA Diversity: Design of
a Heterogeneous-ISA Chip Multiprocessor,” in ISCA, 2014,
pp. 121–132, 14-18 June, Minneapolis, MN.

[3] R. Rico, J.-I. Pérez, and J. A. Frutos, “The impact of x86 instruction
set architecture on superscalar processing,” Journal of Systems
Architecture, vol. 51, no. 1, pp. 63–77, 2005.

[4] A. S. Waterman, Design of the RISC-V Instruction Set Architecture.
PhD thesis, University of California, Berkeley, 2016.

[5] “64-bit ARM (Aarch64) Instructions Boost Performance by 15 to
30% Compared to 32-bit ARM (Aarch32) Instructions.”
http://www.cnx-software.com/2016/03/01/64-bit-arm-
aarch64-instructions-boost-performance-by-15-to-30-
compared-to-32-bit-arm-aarch32-instructions/. [acc.
6/1/2017].

[6] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE micro,
vol. 19, no. 2, pp. 24–36, 1999.

[7] D. Bhandarkar, “RISC versus CISC: A Tale of Two Chips,”
SIGARCH Comput. Arch. News, vol. 25, no. 1, pp. 1–12, 1997.

[8] D. Bhandarkar and D. W. Clark, “Performance from Architecture:
Comparing a RISC and a CISC With Similar Hardware
Organization,” in SIGARCH Comput. Arch. News, vol. 19,
pp. 310–319, 1991.

[9] C. Isen, L. K. John, and E. John, “A Tale of Two Processors:
Revisiting the RISC-CISC Debate,” in Proceedings of SPEC
Benchmark Workshop on Computer Performance Evaluation and
Benchmarking, pp. 57–76, Springer-Verlag, 2009.

[10] D. Ye, J. Ray, C. Harle, and D. Kaeli, “Performance Characterization
of SPEC CPU2006 Integer Benchmarks on x86-64 Architecture,” in
Proceedings of IEEE ISWC, 2006.

[11] B. C. Lopes, R. Auler, L. Ramos, E. Borin, and R. Azevedo,
“SHRINK: Reducing the ISA Complexity via Instruction Recycling,”
SIGARCH Comput. Arch. News, vol. 43, pp. 311–322, June 2015.

[12] V. M. Weaver and S. A. McKee, “Code Density Concerns for New
Architectures,” in IEEE ICCD, pp. 459–464, 2009.

[13] E. Blem, J. Menon, T. Vijayaraghavan, and K. Sankaralingam, “ISA
Wars: Understanding the Relevance of ISA being RISC or CISC to
Performance, Power, and Energy on Modern Architectures,” ACM
Transactions on Computer Systems, vol. 33, pp. 3:1–3:34, Mar. 2015.

[14] E. Blem, J. Menon, and K. Sankaralingam, “A detailed analysis of
contemporary arm and x86 architectures,” UW-Madison Technical
Report, 2013.

[15] V. M. Weaver, “ll: Exploring the limits of code density.”
http://web.eece.maine.edu/~vweaver/papers/iccd09/ll_
document.pdf. [acc. 6/1/2017].

[16] R. Durán and R. Rico, “Quantification of isa impact on superscalar
processing,” in IEEE International Conference on Computer as a
Tool, EUROCON, vol. 1, pp. 701–704, 2005.

[17] B. C. Lopes, L. Ecco, E. C. Xavier, and R. Azevedo, “Design and
Evaluation of Compact ISA Extensions,” Microprocessors and
Microsystems, vol. 40, pp. 1–15, 2016.

[18] R. B. Lee, “Multimedia extensions for general-purpose processors,”
in IEEE Workshop on Signal Processing Systems., pp. 9–23, 1997.

[19] N. T. Slingerland and A. J. Smith, “Multimedia extensions for
general purpose microprocessors: A survey,” Microprocessors and
Microsystems, vol. 29, no. 5, pp. 225–246, 2005.

[20] S. Bartolini, R. Giorgi, and E. Martinelli, “Instruction set extensions
for cryptographic applications,” in Cryptographic Engineering,
pp. 191–233, Springer, 2009.

[21] I.-J. Huang and A. Despain, “Synthesis of Application Specific
Instruction Sets,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, pp. 663–675, Jun 1995.

[22] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution Migration in
a Heterogeneous-ISA Chip Multiprocessor,” SIGARCH Comput.
Archit. News, vol. 40, pp. 261–272, Mar. 2012.

[23] C. Celio, P. Dabbelt, D. Patterson and K. Asanović, “The Renewed
Case for the Reduced Instruction Set Computer: Avoiding ISA Bloat
with Macro-Op Fusion for RISC-V,” Tech. Rep.
UCB/EECS-2016-130, Electrical Engineering and Computer
Sciences, University of California at Berkeley, July 2016.

[24] “The RISC-V Instruction Set Architecture.” https://riscv.org/.
[acc. 6/1/2017].

[25] S. Terpe, “Why Instruction Sets No Longer Matter.” http:
//ethw.org/Why_Instruction_Sets_No_Longer_Matter.
[acc. 6/1/2017].

[26] J. Engblom, “Does ISA Matter for Performance?.”
http://jakob.engbloms.se/archives/1801. [acc. 6/1/2017].

[27] “RISC vs. CISC: the Post-RISC Era.”
http://archive.arstechnica.com/cpu/4q99/risc-
cisc/rvc-6.html. [acc. 6/1/2017].

[28] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 Simulator,” SIGARCH Comput. Arch. News, vol. 39, pp. 1–7,
Aug. 2011.

[29] G. Black, N. Binkert, S. K. Reinhardt, and A. Saidi, “Modular
ISA-Independent Full-System Simulation,” in Processor and
System-on-Chip Simulation, pp. 65–83, Springer, 2010.

[30] “SPEC CPU 2006.” https://www.spec.org/cpu2006/. [acc.
6/1/2017].

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in IEEE 4th Annual Workshop on
Workload Characterization, pp. 3–14, Austin, TX, 2 December 2001.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,” in
SIGARCH Comp. Arch. News, vol. 30, pp. 45–57, 2002.

[33] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call
Graph Execution Profiler,” in ACM Sigplan Notices, vol. 17,
pp. 120–126, 1982.

[34] K. Hoste and L. Eeckhout, “Microarchitecture-independent
Workload Characterization,” IEEE Micro, vol. 27, no. 3, 2007.

10

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
http://web.eece.maine.edu/~vweaver/papers/iccd09/ll_document.pdf
http://web.eece.maine.edu/~vweaver/papers/iccd09/ll_document.pdf
https://riscv.org/
http://ethw.org/Why_Instruction_Sets_No_Longer_Matter
http://ethw.org/Why_Instruction_Sets_No_Longer_Matter
http://jakob.engbloms.se/archives/1801
http://archive.arstechnica.com/cpu/4q99/risc-cisc/rvc-6.html
http://archive.arstechnica.com/cpu/4q99/risc-cisc/rvc-6.html
https://www.spec.org/cpu2006/

	Introduction
	Overview of Instruction Sets Under Analysis
	x86-64
	ARMv8
	Alpha

	Related Work
	Methodology
	Results and Analysis
	Conclusion
	References

