
Trusted Execution for High-Performance Computing
Ayaz Akram

Department of Computer Science,
University of California, Davis

yazakram@ucdavis.edu

Eurosys Doctoral Workshop 2021 (EuroDW’21)

Abstract—High-performance computing (HPC) is moving
away from traditional simulation and modeling to large-scale
computational problems involving large datasets. Sometimes this
data can be sensitive, provided by third parties to HPC centers or
individual researchers, and raises security concerns. This work
aims to provide secure systems focused on HPC centers keeping
the performance loss to a minimum.

I. SCOPE OF THE PROBLEM

The use of sensitive data sets in HPC centers raises security
concerns and eventually leads to the problem of mistrust
between data providers, compute providers and users of HPC
resources [32]. This, sometimes, results into an implicit trade-
off between security and service provision. Currently, even
if secure enclaves are made available to protect the sensitive
data sets, they are far from user friendly. In contrast, the use
of hardware based TEEs (trusted execution environments) can
provide a usable compute model which can also guarantee
security from other users or un-trusted components in the
HPC system. Different CPU manufacturers have presented
different TEE solutions so far (e.g. Intel’s SGX [3], AMD’s
SEV [24], and ARM’s TrustZone [10]), however, none of them
are targeted towards the use-case of HPC. In this work, we plan
to propose TEE based (or TEE inspired) security solutions for
high performance computing centers.

Before delving into the discussion on how are we trying
to solve this problem, it is worth identifying some features
which distinguish HPC from general purpose computing en-
vironments and their significance for secure architectures i.e.
what restrictions these features impose on a secure architecture
and if/how some of them can be leveraged to simplify the
secure architecture design.

• HPC applications are mostly multi-threaded and have
large working sets. This means that the secure environ-
ment should be capable of supporting multiple execution
threads and should have minimal performance overhead
even if the memory size that needs to be secured is large.

• HPC applications mostly scale across multiple nodes
and rely on message passing run-times like MPI for
communication across nodes. Thus, protection against
physical attacks when multiple nodes are involved should
be provided. The support for secure boot, remote attesta-
tion across multiple nodes at the same time should also
be provided. None of the existing TEEs support this.

• HPC centres usually have high speed network inter-
connects (e.g. InfiniBand) between multiple nodes (can
support 10s of GB/s bandwidth) and mostly rely on
one-sided communication protocols like RDMA [28].
Protocols like RDMA (which bypass OS mostly), while
provide performance benefits, raise new security threats
because of their one-sided communication nature. At the
same time the bypassing of OS provides an opportunity
to exclude OS from the trusted computing base (or have
less trust in the OS).

• HPC applications rely on limited types of I/O e.g. net-
work I/O is mostly used to communicate with other
nodes and even the disk accesses reduce to network I/O
as (distributed) file systems are usually maintained on
remote nodes. Moreover, the OS is mostly bypassed and
I/O is handled in user-space libraries or run-times.

• Nodes in an HPC center are alloted to a single user at a
particular time and only get multiplexed at granularity of
large time intervals. This can enable easier mechanisms
to provide user isolation guarantees.

• HPC systems have also started to integrate accelerators
(like GPUs and FPGAs) to offload certain applications or
parts of applications to those processing elements. This
necessitates the inclusion of these processing elements
into trusted computing base as well.

• HPC applications often rely on third party libraries and
it might be harder for such applications to be modified
or re-written to port them to a different secure execution
programming model. Thus, the secure solutions should
try to reduce the number of changes that might be needed
in the workloads (or avoid recompilation).

Table I provides a taxonomy of different TEE features that
some of the current TEEs provide and an HPC-centric TEE
should provide. The missing pieces are the things we plan to
work on in this project.

II. OVERVIEW OF THE PROPOSED WORK

In order to explain how are we tackling the problem dis-
cussed above, we can take a look at Figure 1, which shows an
example dual node HPC system (logically it can be extended
to more than 2 nodes), and identifies main attack points that
can be exploited by the adversary. The possible protection
mechanisms for each attack point are also shown as well (on
the right side of pointers).

Fig. 1: Threat model of an HPC system (inspired from [36])

Of particular interest to HPC are: 4 , 5 , 6 , and 7 .
These attack points have mostly not been considered by
TEE developers in the past. The attacks at 1 , 2 , and 3
are mostly already covered by the existing TEE solutions.
However, as shown in Figure 1, there already exist a number of
security mechanisms that can provide protection at these attack
points as well. Essentially the solution to our problem boils
down to coming up with the right combination of mechanisms
that will provide protection for our threat model at lowest
performance cost. Thus, we plan to perform a design space
exploration of different available mechanisms and trimming it
down to the most suitable mechanisms for HPC. At the same
time, we plan to explore if we can come up with a single
unified mechanism to provide protection against all of these
attacks.

Table I. Taxonomoy of different TEE features. HPC centric (row in green shade) refers to what is best for HPC.
Brown shaded columns are of special importance from HPC perspective.

TEE Software Attacks1 Hardware Attacks2 Level3 TCB I/O
Handling No Changes Needed Use

Cases
HPC

Slowdown4

From
processes

From
OS/

hyper-
visor

From
I/O8

On
I/O8

From
I/O8

Physical
Attacks Hardware Software

SGX [18] 3 3 3 7 7 3 App. App.,
CPU

outside
enclave, in

clear
7 7

Small
desktop
Apps.

large5

SEV [25] 3 3 3 7 7 3 VM
guest OS,

App.,
CPU

using
bounce

buffers, in
clear

3 3
VMs in
Cloud minimal6

TrustZone [10] 3 3 3 7 7 7
system
parti-
tion

App.,
trusted

OS, CPU

I/O part of
secure

world/TCB
7 7 embedded N/A

AWS
Nitro [1] 3 7 7 7 7 VM VM, hy-

pervisor VM socket 3 7
VMs in
cloud minimal

KeyStone [27] 3 3 3 7 7 3 App. App., RT,
SM, CPU

outside
enclave, in

clear
3 7 variable unclear7

HPC centric 3 3 3 3 3 3 App. App.,CPU secure 3 3 All minimal
1Software attacks have software and 2hardware attacks have hardware as the attack surface. 3Level is the granularity/level at which protection is provided.

4No TEE supports multi-node trusted execution and use of software to create secure tunnel between TEEs on multiple nodes cause very high slowdown
5specially for multi-threaded and large memory Apps. 6with careful memory allocation. 7no support for multi-threaded enclave and has large slowdown for IO

Other Notes: These TEEs generally do not consider side channels. Threat of side channels depend on the data sensitivity and leakage rate.
Only SGX provides strong protection against integrity attacks. SEV-SNP provides some gaurantees against inegrity attacks. 8I/O includes GPUs, accelerators and FPGAs as well

III. WORK TO BE DONE

We have already performed an extensive benchmarking of
current TEE technologies to understand their performance

implications and shortcomings [4], [6]–[8]. For our future
work, we plan to rely on an academic proposal of TEEs,
KeyStone [27], as it is open source and customizable. Key-
Stone [27] relies on RISC-V’s primitives like PMP (physical
memory protection) and allows platform specific extensions.
KeyStone make use of machine mode (most privileged mode in
RISC-V) based security monitor (SM), which can be entirely
programmed in software, to control security mechanisms in the
system. Furthermore, proposals of IO-PMP (physical memory
protection for IO) are already in discussion. Using a RISC-V
based TEE provides flexibility to easily extend or add new
features in the ISA if needed. We plan to extend KeyStone to
perform a design space exploration of the secure mechanisms
referred above. Currently, KeyStone lacks a number of features
that would make it ideal for such studies. For example, it
only supports single threaded enclaves right now and is also
expected to have performance implications while trying to
synchronize PMP entries across multiple processors in a multi-
processor system. We plan to resolve these issues first.

We plan to rely on evaluations using qemu [13] and
gem5 [14], [29]. KeyStone [27] has already been available
on qemu for single node TEEs. We plan to use qemu for
initial functionality testing and for more detailed studies we
will be relying on gem5. As a first step, we will be porting
KeyStone to gem5 [5]. We can also use CloudLab [20] for
real system studies. As far as simulation of distributed systems
is concerned, dist-gem5 [30] is a possible framework to use
as well as researchers have already explored the use of gem5
integrated with network simulators like LogGOPSim [23] (e.g.
as used by [22]).

For our evaluations we plan to use HPC kernels like NAS
Parallel Benchmark suite (NPB) [11], graph workloads like

(GAPBS) [12] and other DOE HPC workloads (e.g. [2], [9],
[17], [26].

IV. RELATED WORK

There exist many other academic TEEs ([15], [16], [19],
[33], [35]) apart from KeyStone. Similarly, there are various
proposals to improve the performance implications of en-
claves [21], [31], [34], [37]. However, none of them is focused
on HPC and they do not target the aspects we are focusing on
in this work.

REFERENCES

[1] AWS Nitro Enclaves. https://aws.amazon.com/ec2/nitro/nitro-enclaves/.
[2] Hydrodynamics Challenge Problem, Lawrence Livermore National Lab-

oratory. Technical Report LLNL-TR-490254.
[3] Intel Software Gaurd Extensions (Intel SGX). Available: https://software.

intel.com/en-us/sgx/details.
[4] Ayaz Akram. Setting up Trusted HPC System in the Cloud. https:

//arch.cs.ucdavis.edu/blog/2020-11-19-cloud-hpc, 2020.
[5] Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason Lowe-Power.

Enabling design space exploration for risc-v secure compute environ-
ments. In Fifth Workshop on Computer Architecture Research with
RISC-V (CARRV 2021), pages 1–7, 2021.

[6] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power,
and Sean Peisert. Using trusted execution environments on high
performance computing platforms. In Open-source Enclaves Workshop
(OSEW 2019), july 2019.

[7] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-
Power, and Sean Peisert. Performance analysis of scientific com-
puting workloads on trusted execution environments. arXiv preprint
arXiv:2010.13216, 2020.

[8] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power,
and Sean Peisert. Performance analysis of scientific computing work-
loads on general purpose tees. In Proceedings of the 35th IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
May, 2021.

[9] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and
David J Lipman. Basic Local Alignment Search Tool. Journal of
molecular biology, 215(3):403–410, 1990.

[10] Tiago Alves and Don Felton. TrustZone: Integrated Hardware and
Software Security. Information Quarterly, pages 18–24, 2004.

[11] David H Bailey, Eric Barszcz, John T Barton, David S Browning,
Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson,
Thomas A Lasinski, Rob S Schreiber, et al. The NAS Parallel Bench-
marks. The International Journal of Supercomputing Applic ations,
5(3):63–73, 1991.

[12] Scott Beamer, Krste Asanović, and David Patterson. The GAP Bench-
mark Suite. arXiv preprint arXiv:1508.03619, 2015.

[13] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, FREENIX Track, pages 41–46.
Anaheim, CA, Anaheim, CA, 10-15 April 2005.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 Simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, May 2011.

[15] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. Sanctuary: Arming trustzone with user-space
enclaves. In NDSS, 2019.

[16] David Champagne and Ruby B Lee. Scalable architectural support
for trusted software. In HPCA-16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pages 1–12.
IEEE, 2010.

[17] Cy Chan et al. Mobiliti: Scalable Transportation Simulation Using High-
Performance Parallel Computing. In ITSC, pages 634–641, 2018.

[18] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology
ePrint Archive, 2016. https://eprint.iacr.org/2016/086.

[19] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 857–874, 2016.

[20] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1–14, July 2019.

[21] Anders T Gjerdrum, Robert Pettersen, Håvard D Johansen, and Dag
Johansen. Performance of Trusted Computing in Cloud Infrastructures
with Intel SGX. In Proceedings of the 7th International Conference on
Cloud Computing and Services Science, pages 668–675, Porto, Portugal,
Apr. 2017.

[22] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E
Grant, and Ron Brightwell. spin: High-performance streaming process-
ing in the network. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–16, 2017.

[23] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Loggopsim:
simulating large-scale applications in the loggops model. In Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, pages 597–604, 2010.

[24] David Kaplan. AMD x86 Memory Encryption Technologies. In Linux
Security Summit, 2017.

[25] David Kaplan, Jeremy Powell, and Tomand Woller. AMD MEMORY
ENCRYPTION, 2016. White paper.

[26] Adam J Kunen, Teresa S Bailey, and Peter N Brown. KRIPKE - A
Massively Parallel Transport Mini-App. Technical report, Lawrence
Livermore National Lab (LLNL), Livermore, CA (United States), 2015.

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and
Dawn Song. Keystone: An open framework for architecting trusted
execution environments. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[28] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. High performance
rdma-based mpi implementation over infiniband. International Journal
of Parallel Programming, 32(3):167–198, 2004.

[29] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Srikant Bharadwaj, Gabe Black, et al. The gem5 simulator:
Version 20.0+. arXiv preprint arXiv:2007.03152, 2020.

[30] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst,
Daehoon Kim, and Nam Sung Kim. dist-gem5: Distributed simulation
of computer clusters. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 153–
162. IEEE, 2017.

[31] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
Eleos: ExitLess OS Services for SGX Enclaves. In Proceedings of the
12th ACM European Conference on Computer Systems, pages 238–253,
Belgrade, Serbia, Apr. 2017.

[32] Sean Peisert. Security in high-performance computing environments.
Communications of the ACM, 60(9):72–80, 2017.

[33] Ling Ren, Christopher W Fletcher, Albert Kwon, Marten Van Dijk, and
Srinivas Devadas. Design and implementation of the ascend secure
processor. IEEE Transactions on Dependable and Secure Computing,
16(2):204–216, 2017.

[34] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy
Elsasser, Jose A Joao, and Moinuddin K Qureshi. Morphable Counters:
Enabling Compact Integrity Trees for Low-Overhead Secure Memories.
In 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2018.

[35] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and
Srinivas Devadas. Aegis: Architecture for tamper-evident and tamper-
resistant processing. In ACM International Conference on Supercom-
puting 25th Anniversary Volume, pages 357–368, 2003.

[36] Jakub Szefer. Principles of secure processor architecture design. Syn-
thesis Lectures on Computer Architecture, 13(3):1–173, 2018.

[37] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. VAULT:
Reducing Paging Overheads in SGX with Efficient Integrity Verification
Structures. In Proceedings of the 23rd ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 665–678, Williamsburg, VA, Mar. 2018.

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://software.intel.com/en-us/sgx/details
https://software.intel.com/en-us/sgx/details
https://arch.cs.ucdavis.edu/blog/2020-11-19-cloud-hpc
https://arch.cs.ucdavis.edu/blog/2020-11-19-cloud-hpc
https://eprint.iacr.org/2016/086

	Scope of the Problem
	Overview of the Proposed Work
	Work to be Done
	Related Work
	References

