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Abstract—High-performance computing (HPC) is moving
away from traditional simulation and modeling to large-scale
computational problems involving large datasets. Sometimes this
data can be sensitive, provided by third parties to HPC centers or
individual researchers, and raises security concerns. This work
aims to provide secure systems focused on HPC centers keeping
the performance loss to a minimum.

I. SCOPE OF THE PROBLEM

The use of sensitive data sets in HPC centers raises security
concerns and eventually leads to the problem of mistrust
between data providers, compute providers and users of HPC
resources [32]. This, sometimes, results into an implicit trade-
off between security and service provision. Currently, even
if secure enclaves are made available to protect the sensitive
data sets, they are far from user friendly. In contrast, the use
of hardware based TEEs (trusted execution environments) can
provide a usable compute model which can also guarantee
security from other users or un-trusted components in the
HPC system. Different CPU manufacturers have presented
different TEE solutions so far (e.g. Intel’s SGX [3], AMD’s
SEV [24], and ARM’s TrustZone [10]), however, none of them
are targeted towards the use-case of HPC. In this work, we plan
to propose TEE based (or TEE inspired) security solutions for
high performance computing centers.

Before delving into the discussion on how are we trying
to solve this problem, it is worth identifying some features
which distinguish HPC from general purpose computing en-
vironments and their significance for secure architectures i.e.
what restrictions these features impose on a secure architecture
and if/how some of them can be leveraged to simplify the
secure architecture design.

• HPC applications are mostly multi-threaded and have
large working sets. This means that the secure environ-
ment should be capable of supporting multiple execution
threads and should have minimal performance overhead
even if the memory size that needs to be secured is large.

• HPC applications mostly scale across multiple nodes
and rely on message passing run-times like MPI for
communication across nodes. Thus, protection against
physical attacks when multiple nodes are involved should
be provided. The support for secure boot, remote attesta-
tion across multiple nodes at the same time should also
be provided. None of the existing TEEs support this.

• HPC centres usually have high speed network inter-
connects (e.g. InfiniBand) between multiple nodes (can
support 10s of GB/s bandwidth) and mostly rely on
one-sided communication protocols like RDMA [28].
Protocols like RDMA (which bypass OS mostly), while
provide performance benefits, raise new security threats
because of their one-sided communication nature. At the
same time the bypassing of OS provides an opportunity
to exclude OS from the trusted computing base (or have
less trust in the OS).

• HPC applications rely on limited types of I/O e.g. net-
work I/O is mostly used to communicate with other
nodes and even the disk accesses reduce to network I/O
as (distributed) file systems are usually maintained on
remote nodes. Moreover, the OS is mostly bypassed and
I/O is handled in user-space libraries or run-times.

• Nodes in an HPC center are alloted to a single user at a
particular time and only get multiplexed at granularity of
large time intervals. This can enable easier mechanisms
to provide user isolation guarantees.

• HPC systems have also started to integrate accelerators
(like GPUs and FPGAs) to offload certain applications or
parts of applications to those processing elements. This
necessitates the inclusion of these processing elements
into trusted computing base as well.

• HPC applications often rely on third party libraries and
it might be harder for such applications to be modified
or re-written to port them to a different secure execution
programming model. Thus, the secure solutions should
try to reduce the number of changes that might be needed
in the workloads (or avoid recompilation).

Table I provides a taxonomy of different TEE features that
some of the current TEEs provide and an HPC-centric TEE
should provide. The missing pieces are the things we plan to
work on in this project.

II. OVERVIEW OF THE PROPOSED WORK

In order to explain how are we tackling the problem dis-
cussed above, we can take a look at Figure 1, which shows an
example dual node HPC system (logically it can be extended
to more than 2 nodes), and identifies main attack points that
can be exploited by the adversary. The possible protection
mechanisms for each attack point are also shown as well (on
the right side of pointers).



Fig. 1: Threat model of an HPC system (inspired from [36])

Of particular interest to HPC are: 4 , 5 , 6 , and 7 .
These attack points have mostly not been considered by
TEE developers in the past. The attacks at 1 , 2 , and 3
are mostly already covered by the existing TEE solutions.
However, as shown in Figure 1, there already exist a number of
security mechanisms that can provide protection at these attack
points as well. Essentially the solution to our problem boils
down to coming up with the right combination of mechanisms
that will provide protection for our threat model at lowest
performance cost. Thus, we plan to perform a design space
exploration of different available mechanisms and trimming it
down to the most suitable mechanisms for HPC. At the same
time, we plan to explore if we can come up with a single
unified mechanism to provide protection against all of these
attacks.

Table I. Taxonomoy of different TEE features. HPC centric (row in green shade) refers to what is best for HPC.
Brown shaded columns are of special importance from HPC perspective.

TEE Software Attacks1 Hardware Attacks2 Level3 TCB I/O
Handling No Changes Needed Use

Cases
HPC

Slowdown4

From
processes

From
OS/

hyper-
visor

From
I/O8

On
I/O8

From
I/O8

Physical
Attacks Hardware Software

SGX [18] 3 3 3 7 7 3 App. App.,
CPU

outside
enclave, in

clear
7 7

Small
desktop
Apps.

large5

SEV [25] 3 3 3 7 7 3 VM
guest OS,

App.,
CPU

using
bounce

buffers, in
clear

3 3
VMs in
Cloud minimal6

TrustZone [10] 3 3 3 7 7 7
system
parti-
tion

App.,
trusted

OS, CPU

I/O part of
secure

world/TCB
7 7 embedded N/A

AWS
Nitro [1] 3 7 7 7 7 VM VM, hy-

pervisor VM socket 3 7
VMs in
cloud minimal

KeyStone [27] 3 3 3 7 7 3 App. App., RT,
SM, CPU

outside
enclave, in

clear
3 7 variable unclear7

HPC centric 3 3 3 3 3 3 App. App.,CPU secure 3 3 All minimal
1Software attacks have software and 2hardware attacks have hardware as the attack surface. 3Level is the granularity/level at which protection is provided.

4No TEE supports multi-node trusted execution and use of software to create secure tunnel between TEEs on multiple nodes cause very high slowdown
5specially for multi-threaded and large memory Apps. 6with careful memory allocation. 7no support for multi-threaded enclave and has large slowdown for IO

Other Notes: These TEEs generally do not consider side channels. Threat of side channels depend on the data sensitivity and leakage rate.
Only SGX provides strong protection against integrity attacks. SEV-SNP provides some gaurantees against inegrity attacks. 8I/O includes GPUs, accelerators and FPGAs as well

III. WORK TO BE DONE

We have already performed an extensive benchmarking of
current TEE technologies to understand their performance

implications and shortcomings [4], [6]–[8]. For our future
work, we plan to rely on an academic proposal of TEEs,
KeyStone [27], as it is open source and customizable. Key-
Stone [27] relies on RISC-V’s primitives like PMP (physical
memory protection) and allows platform specific extensions.
KeyStone make use of machine mode (most privileged mode in
RISC-V) based security monitor (SM), which can be entirely
programmed in software, to control security mechanisms in the
system. Furthermore, proposals of IO-PMP (physical memory
protection for IO) are already in discussion. Using a RISC-V
based TEE provides flexibility to easily extend or add new
features in the ISA if needed. We plan to extend KeyStone to
perform a design space exploration of the secure mechanisms
referred above. Currently, KeyStone lacks a number of features
that would make it ideal for such studies. For example, it
only supports single threaded enclaves right now and is also
expected to have performance implications while trying to
synchronize PMP entries across multiple processors in a multi-
processor system. We plan to resolve these issues first.

We plan to rely on evaluations using qemu [13] and
gem5 [14], [29]. KeyStone [27] has already been available
on qemu for single node TEEs. We plan to use qemu for
initial functionality testing and for more detailed studies we
will be relying on gem5. As a first step, we will be porting
KeyStone to gem5 [5]. We can also use CloudLab [20] for
real system studies. As far as simulation of distributed systems
is concerned, dist-gem5 [30] is a possible framework to use
as well as researchers have already explored the use of gem5
integrated with network simulators like LogGOPSim [23] (e.g.
as used by [22]).

For our evaluations we plan to use HPC kernels like NAS
Parallel Benchmark suite (NPB) [11], graph workloads like



(GAPBS) [12] and other DOE HPC workloads (e.g. [2], [9],
[17], [26].

IV. RELATED WORK

There exist many other academic TEEs ( [15], [16], [19],
[33], [35]) apart from KeyStone. Similarly, there are various
proposals to improve the performance implications of en-
claves [21], [31], [34], [37]. However, none of them is focused
on HPC and they do not target the aspects we are focusing on
in this work.
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Dawn Song. Keystone: An open framework for architecting trusted
execution environments. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[28] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. High performance
rdma-based mpi implementation over infiniband. International Journal
of Parallel Programming, 32(3):167–198, 2004.

[29] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
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