
A Comparison of x86 Computer Architecture Simulators
Ayaz Akram and Lina Sawalha∗

Dept. of Electrical and Computer Engineering
Western Michigan University, Kalamazoo, MI

Simulation is used as a primary performance evaluation
methodology in most computer architecture publications.
There is not much literature dealing with the evaluation
of simulators by comparing them to each other and to the
state-of-the-art processors. The absence of performance val-
idation of simulators may cause experimental errors that can
lead to incorrect conclusions. This work provides a simula-
tion accuracy and performance comparison of four modern
x86 computer architecture simulators: gem5 [1], Sniper [2],
MARSSx86 [3] and ZSim [4]. We configured these simulators
to model one of Intel’s high-performance processor, Core-i7
Haswell microarchitecture based CPU. Then we quantified
the experimental errors. The selected simulators for this
study have diverse design strategies with respect to detail
and abstraction. All of them are contemporary simulators
with active development.

Validation effort for gem5 simulator exists for ARM based
systems [1, 5], however; no validation for x86 systems ex-
ists. Latest validation effort for Sniper was done for Intel
Nehalem microarchitecure processor showing a single-core
error of 11.1% for a subset of SPLASH-2 benchmarks [2].
ZSim has been validated against an Intel Westmere system
showing an average error of 10% [6]. We did not find any rig-
orous validation effort for MARSSx86. Our previous work
compared the accuracy and speed of some of the aforemen-
tioned simulators, and few others, for single core simulations
only [7]. This work, compares more simulators for single-
core and multicore runs with real hardware platform runs.

The experimental system that we used to test the four
simulators is similar to Haswell microarchitecture (i7-4770
CPU, 3.40 GHz), see Table 1. As all the exact configura-
tions for our target processor are not published by Intel, we
tried our best to model similar features based on some Intel
documentation [8] and other sources [9, 10, 11]. We com-
pared the instruction per cycle (IPC), L1 data cache miss,
L3 cache miss and branch misprediction values from the sim-
ulation results with that of real hardware runs for MiBench
and SPEC-CPU2006 benchmark suites.

Figure 1 shows single-core’s IPC, branch mispredictions
and L1 data cache misses, and dual-core’s and quad-core’s
IPC runs normalized to results obtained on real hardware,
using hardware monitoring counters. For dual and quad-
core runs, benchmark combinations are randomly selected
from SPEC-CPU2006 benchmark suite. The figure shows

* Corresponding author email: lina.sawalha@wmich.edu
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

two types of average errors for all evaluated metrics: one in-
cluding all benchmarks, avgERROR, and the other without
outliers, avgERROR − NO; where an outlier corresponds
to more than 50% inaccuracy in a metric.

Table 1: Target Configurations.
Parameter Core i7 Like

Pipeline Out of Order
Fetch width 6 instructions per cycle
Decode width 4-7 fused µ-ops
Decode queue 56 µ-ops
Rename and issue widths 4 fused µ-ops
Dispatch width 8 µ-ops
Commit width 4 fused µ-ops per cycle
Reservation station 60 entries
Reorder buffer 192 entries
Number of stages 19
L1 data cache 32KB, 8 way
L1 instruction cache 32KB, 8 way
L2 cache size 256KB, 8 way
L3 cache size 8 MB, 16 way
Cache line size 64 Bytes
L1 cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Operation latency Based on [8, 9]
Branch predictor, BTB entries Tournament, 4K
Branch misprediction penalty 14 cycles

For embedded benchmarks, the mean absolute percentage
error (MAPE) in IPC values (without outliers) compared
to real hardware runs is: 20.6%, 37.6%, 33.03% and 24.3%
for Sniper, gem5, MARSSx86 and ZSim respectively. The
MAPE (without outliers) for integer benchmarks for Sniper,
gem5, MARSSx86 and ZSim is 17.6%, 37.1%, 22.16% and
22.59% respectively. For floating point benchmarks, the
MAPE excluding outliers is 24.8%, 35.4%, 32.0% and 27.5%
for Sniper, gem5, MARSSx86 and ZSim respectively.

To understand some sources of inaccuracies of the sim-
ulators, we looked at cache misses and branch mispredici-
ton behaviors. As can be seen in Figure1, many cases exist
where the average error for cache misses and branch mispre-
diction goes above 100% for gem5. This helps to understand
very high underestimation of IPC values by simulators for
some benchmarks. For example, most of the outliers in gem5
(h264ref , gcc 200, gobmk, perlbench, namd, povray) have
much higher branch mispredictions and cache misses than
real hardware runs. The benchmarks that have high over-
estimated branch mispredictions are those that have a high
percentage of branch instructions in their dynamic instruc-
tion mix (20% or more). Furthermore, some of the IPC
inaccuracies can be due to the way some of the x86 instruc-
tions are decoded and implemented in gem5.

Other simulators show similar results of overestimated
branch mispredictions and cache misses associated with bench-
marks with high IPC inaccuracies, for example: h264ref ,
libquantum, milc and povray on MARSSx86 and gamess,
libquantum and mcf on ZSim. Note that MARSSx86 is a
full-system only simulator, while the other simulators are
run using application-mode. The results of MARSSx86 in-

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

ba
si

c_
m

at
h

bi
tc

nt
s

di
js

kt
ra

jp

eg

qs
or

t
st

rin
g_

se
ar

ch

ty
pe

se
t

av
gE

R
R

O
R

av

gE
R

R
O

R
-

bz
ip

_c
hi

ck
en

gc

c_
20

0
go

bm
k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

_i
n

om
ne

tp
p

pe
rlb

en
ch

sj

en
g_

re
f

xa
la

nc
bm

k

av
gE

R
R

O
R

av

gE
R

R
O

R
-

ga
m

es
s

ge
m

sF
D

TD

gr
om

ac
s

lb
m

le

sl
ie

m

ilc

na
m

d
po

vr
ay

so

pl
ex

av
gE

R
R

O
R

av

gE
R

R
O

R
-

N
or
m
al
iz
ed

	 IP
C	
Va

lu
es
	

GEM5	 MARSSx86	 Sniper	 Zsim	

	 	 	 	 MiBench	 	 	 	 	 INT-‐SPEC	 CPU2006	 FP-‐SPEC	 CPU2006	

0

1

2

3

4

5

6

7

8

9

10

b
zi
p
_
ch
ic
k
e
n

g
cc
_
2
0
0

g
o
b
m
k

h
2
6
4
re
f

h
m
m
e
r

li
b
q
u
a
n
tu
m

m
cf
_
in

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

sj
e
n
g
_
re
f

xa
la
n
cb
m
k

a
v
g
E
R
R
O
R

a
v
g
E
R
R
O
R
-N
O

g
a
m
e
ss

g
e
m
sF
D
T
D

g
ro
m
a
cs

lb
m

le
sl
ie

m
il
c

n
a
m
d

p
o
v
ra
y

so
p
le
x

a
v
g
E
R
R
O
R

a
v
g
E
R
R
O
R
-N
ON

o
rm

a
li

ze
d

 B
ra

n
ch

 M
is

p
re

d
ic

ti
o

n
s GEM5 MARSSx86 Sniper Zsim

INT-SPEC CPU2006 FP-SPEC CPU2006

72 16
62

15
86 1863 210

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

bz
ip
_c
hi
ck
en

gc
c_
20

0

go
bm

k

h2
64

re
f

hm
m
er

lib
qu

an
tu
m

m
cf
_i
n

om
ne

tp
p

pe
rlb

en
ch

sj
en

g_
re
f

xa
la
nc
bm

k

av
gE
RR

O
R

av
gE
RR

O
R-
N
O

ga
m
es
s

ge
m
sF
D
TD

gr
om

ac
s

lb
m

le
sl
ie

m
ilc

na
m
d

po
vr
ay

so
pl
ex

av
gE
RR

O
R

av
gE
RR

O
R-
N
O

N
or

m
al

iz
ed

 L
1

D
Ca

ch
e

M
is

se
s

GEM5 MARSSx86 Sniper Zsim

INT-SPEC CPU2006 FP-SPEC CPU2006

	 	 	 	 	 	 	 	 	 	 	 	 	 	 3.78	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

go
bm

k_
m
ilc
	

h2
64
re
f_
om

ne
tp
p	

xa
la
nc
bm

k_
om

ne
tp
p	

xa
la
nc
bm

k_
ge
m
sf
dt
d	

go
bm

k_
gc
c	

gr
om

ac
s_
gc
c	

om
ne

tp
p_

gc
c	

hm
m
er
_g
cc
	

bz
ip
_o

m
ne

tp
p	

lib
qu

an
tu
m
_x
al
an

cb
	

pe
rl
be

nc
h_

xa
la
nc
bm

k	

pe
rl
be

nc
h_

le
sl
ie
3d

	

pe
rl
be

nc
h_

om
ne

tp
p	

m
cf
_g
ro
m
ac
s	

av
gE
R
R
O
R
	

av
gE
R
R
O
R
-‐N
O
	 N
or
m
al
iz
ed

	 IP
C	
V
al
ue

s	 gem5	 MARSSx86	 Sniper	 Zsim	

	 	 	 	 	 	 	 	 	 	 2.9	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 4.8	

	
	
	
	
	
	
	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	

xa
la
n_

om
ne

tp
p_

xa
la

n_
ge
m
sf
d	

go
bm

k_
gc
c_
gc
c_
gr
om

ac
s	

om
ne

tp
p_

gc
c_
gc
c_
h

m
m
er
	

om
ne

tp
p_

bz
ip
_l
ib
qu

a
nt
um

_x
al
an

	

om
ne

tp
p_

pe
rl
be

nc
h_

m
cf
_g
ro
m
ac
s	

gc
c_
lib

qu
an

tu
m
_m

cf
_

bz
ip
	

na
m
d_

ge
m
sf
dt
_h

m
m

er
_h

26
4r
ef
	

go
bm

k_
gr
om

ac
s_
sj
en

g_
go
bm

k	

pe
rl
be

nc
h_

pe
rl
be

nc
h

_s
je
ng
_g
cc
	

lb
m
_l
bm

_h
26
4r
ef
_g
r

om
ac
s	

av
gE
RR

O
R	

av
gE
RR

O
R-‐
N
O
	 N
or
m
al
iz
ed

	 IP
C	
V
al
ue

s	

gem5	 MARSSx86	 Sniper	 Zsim	

2.5	

Figure 1: (From top to bottom) Normalized values of single-

core IPC, branch mispredictions, L1-dcache, relative IPC

change, dual-core and quad-core IPC.

clude both kernel and application instructions. Another
source of inaccuracy for all simulators can be a result of the
lack of support of fused µ-ops, and µ-op cache of Haswell
(significantly reduces the effective pipeline depth in case of
µ-op cache hit). Sniper and ZSim show close accuracy for
multicore runs (less experimental error than gem5).

In addition to comparing the absolute performance of sim-
ulators, we studied the effect of changing pipeline widths
(half of their values from Table 1) for MiBench benchmarks.
The simulators show different sensitivity to this change, see
Figure 2. We also compared these simulators on the basis

-‐30	

-‐25	

-‐20	

-‐15	

-‐10	

-‐5	

0	

b
a
si
c_
m
a
th
	

b
it
cn
ts
	

d
ijs
kt
ra
	

jp
e
g	

q
so
rt
	

st
ri
n
g_
se
a
rc
h
	

ty
p
e
se
t	

a
vg
e
ra
ge
	 P
e
rc
e
n
t	
IP
C
	 C
h
a
n
ge
	

GEM5	 MARSSx86	 Sniper	 Zsim	

	 	 	 Figure 2: Percent change in IPC with half pipeline stages’

widths.

1	

10	

100	

1000	

10000	

100000	

1000000	

Av
g.
	 S
im

ul
a,

on
	 T
im

e	
(s
)	

GEM5	 MARSSx86	 Sniper	 Zsim	

	 MiBench	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 INT-‐CPU2006	 	 	 	 	 	 	 	 	 	 	 	 FP-‐CPU2006	

Figure 3: Simulation Time.

of the time simulators took to perform these simulations.
Figure 3 shows average simulation time in addition to fast
forwarding time for the benchmarks running on the simula-
tors. The results show that ZSim is the fastest simulator.

In summary, this study emphasizes on the importance of
validating simulators, and aims to help the community to
point out sources of inaccuracies in simulators that can be
modified later in future work. Our experiments indicate a
correlation between the accuracy of simulators and the exis-
tence of thorough validation and calibration of simulators for
a particular target architecture. Errors due to abstraction
and lack of details in simulators do not necessarily imply
inaccuracy, as validated simulators can still achieve accept-
able relative performance. In future, we plan to dig deep
into more sources of inaccuracies, and potentially fix them,
and thoroughly study relative performance accuracy.

1. REFERENCES
[1] A. Butko et al., “Accuracy Evaluation of GEM5

Simulator System,” in ReCoSoC, pp. 1–7, 2012.
[2] T. E. Carlson et al. ,“An evaluation of high-level

mechanistic core models,” ACM TACO, vol. 11, no. 3,
p. 28, 2014.

[3] A. Patel et al.,‘MARSS-x86: A Qemu-Based
Micro-Architectural and Systems Simulator for x86
Multicore Processors,” in DATE, pp. 29–30, 2011.

[4] D. Sanchez and C. Kozyrakis, “ZSim: Fast and
Accurate Microarchitectural Simulation of
Thousand-Core Systems,” in ISCA, pp. 475–486, 2013.

[5] A. Gutierrez et al., “Sources of Error in Full-System
Simulation,” in ISPASS, pp. 13–22, 2014.

[6] http://zsim.csail.mit.edu/tutorial/slides/validation.
pdf.[Online; accessed 9-Oct.-2016].

[7] A. Akram and L. Sawalha, “x86 computer architecture
simulators: A comparative study,” in ICCD, pp.
638–645, 2016.

[8] http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.
html. [Online; accessed 9-Oct.-2016].

[9] http://www.agner.org/optimize/instruction tables.
pdf.[Online; accessed 9-Oct.-2016].

[10] http://www.realworldtech.com/haswell-cpu/. [Online;
accessed 9-Oct.-2016].

[11] http://www.anandtech.com/show/6355/
intels-haswell-architecture/6. [accessed 9-Oct.-2016].

