
Final Project Report

Phase Based Instruction Prefetcher

Submitted by
Ayaz Akram

ECE 5950

Department of Electrical and Computer Engineering
WESTERN MICHIGAN UNIVERSITY

Fall 2015

Abstract

This project proposes evaluation of an instruction pre-fetch technique that uses
program phases to perform pre-fetching. Analysis of miss address traces of vari-
ous SPEC CPU2006 benchmarks suggest that number of instruction cache misses
and miss addresses correlate with the phase of program execution. Using this
information, optimal prefetching decisions can be made. Due to low instruction
cache misses in SPEC CPU2006 benchmarks, only few of them have been studied.
A program phase based instruction prefetcher is also implemented in gem5 sim-
ulator. This implementation effort involved studying and understanding code of
prefetching mechanism and memory heirarchy in gem5. Evaluation of this newly
implemented prefetcher is performed by comparing it with an existing Tagged
prefetching mechanism in gem5. Comparison for only three benchmarks could
be performed. Phase based prefetcher works well for only one out of these three,
while tagged prefetching gives lower number of cache misses for other two bench-
marks. But, the number of prefetches generated by phase based prefetcher are
always less than tagged prefetcher. However, different designs can be tested for
this phase based prefetcher, which has the potential to give much better results.

i

Contents
1 Introduction 1

2 Analysis of Miss Address Traces 1

3 Implementation of Prefetcher in gem5 6

4 Results of few benchmarks 6

5 Conclusion and Future Work 8

ii

List of Figures
1 Correlation of I$ misses with phases for gcc 1
2 Correlation of I$ misses with phases for gobmk 2
3 Correlation of I$ misses with phases for mcf 3
4 Correlation of I$ misses with phases for bzip 3
5 Fraction of seen I$ miss addresses for gcc 4
6 Fraction of seen I$ miss addresses for gobmk 4
7 Fraction of seen I$ miss addresses for soplex 5
8 Percentage Reduction in total I$ cache misses 7
9 Number of prefetches issued normalized to prefetches issued by phase preftcher 7

iii

1 Introduction
This project is an evaluation of an instruction pre-fetching mechanism that uses program exe-
cution phases to make prefetching requests to lower level caches or memory. Correct instruc-
tion pre-fetching can result in boost up of performance by hiding the instruction cache miss
latency. Significance of instruction prefetching is increased in case of workloads (e.g. server
workloads, cloud based software servicing) where process binaries are too large to be placed
in caches. [1, 2] have previously proposed instruction prefetchers which use program context
information like RAS status and committed instructions to detect future accesses.
This project involved two phases: (1) analysis of miss address traces of benchmarks and (2)
implementation of a execution phase based prefetcher in gem5 [3] simulator. A subset of
SPEC CPU2006 benchamrks were used for analysis and testing purposes due to availability
of phase distribution information files for these benchmarks (work done by some other stu-
dents). Although miss address traces for many benchmarks have been recorded, but only few
of them are used for further analysis. For example, benchmarks like namd, gemsfd, mcf have
extremely low number of instruction cache misses. Moreover, Omnetpp and H264ref though
show quite a few instruction cache misses, required phase information files are not available
for them. Next section talks about behaviour analyzed while processing the instruction cache
miss traces.

2 Analysis of Miss Address Traces
First of all instruction cache miss address trace files were processed using the available phase
distribution of benchmarks with the number of executed instructions. Figure 1, 2, 3 and 4
show the existing correlation between number of instruction cache misses and program phases.
These misses are seen at L1 instruction cache. Bzip and Mcf have very low number of instruc-
tion cache misses, but still show some correlating/repeating behaviour.

Figure 1: Correlation of I$ misses with phases for gcc

1

Figure 2: Correlation of I$ misses with phases for gobmk

Next, I analyzed to see if the addresses of instruction cache misses also show some sort
of correlation with program phases. For this study, very large miss adress containers/buffers
are assumed. As a particular phase executes/repeats any newly seen miss address is put in a
buffer corresponding to that phase. But this address is counted as “not covered” miss address.
In this way at the end, fraction of those miss addresses is counted which have been previously
seen. This fraction is depicted in Figure 5, 6 and 7 respectively for three benchmarks. High
fraction of previously seen addresses, point to existing correlation between miss addresses and
program phase.

2

Figure 3: Correlation of I$ misses with phases for mcf

Figure 4: Correlation of I$ misses with phases for bzip

3

Figure 5: Fraction of seen I$ miss addresses for gcc

Figure 6: Fraction of seen I$ miss addresses for gobmk

4

Figure 7: Fraction of seen I$ miss addresses for soplex

5

3 Implementation of Prefetcher in gem5
Next, a new prefetcher is added in gem5 which uses previously seen miss adresses for a particu-
lar phase and prefetches accordingly. Gem5 has recently got an improved version of supported
prefetchers: tagged and stride prefetcher. Since, prefetch requests are serialized and then put
into simulated MSHR (miss status holding register), new added phase prefetcher extends the
class of already implemented queue prefetcher which requests the phase prefetcher to generate
prefetch requests on notification event (instruction cache miss in our case). In order to imple-
ment this functionality a thorough study of code was done and finally some changes were put
in different parts of code base. The prefetcher added to gem5, is notified on all instruction
cache misses. On notification of a miss, prefetcher looks into history buffer corresponding to
active phase of execution. If address is found, next d (where d is equal to configured degree
of prefetcher) addresses from the buffer are forwarded as prefetch requests. If address is not
found, no prefetch request is forwarded. This prefetcher can also work as a hybrid of next line
and phase buffer prefetcher.

4 Results of few benchmarks
Three benchmarks were run, to test the working of the simulator and compare its performance
with one of the existing prefetchers of gem5 namely tagged prefetching. I ran numerous sim-
ulations with varying parameters associated with prefetchers to get idea about effect of these
parameters on performance of prefetcher. The final results shown here are run with configured
prefetcher degree value of 6 and prefetch queue size of 16 entries.

Figure 8 shows the percentage reduction in instruction cache misses for both tested prefetch-
ers. This is achieved reduction over the base case of no prefetcher. Soplex has very low num-
ber of instruction cache misses so, probably that is not a very good comparison point, but
other benchmarks results show that tagged prefetcher does better than current implementation
of phase based prefetcher. FIgure 9 shows the generated prefetches by both the prefetchers.
Tagged preftcher always issue more prefetches, which means it should be consuming more
energy for those prefetch request issues.

6

Figure 8: Percentage Reduction in total I$ cache misses

Figure 9: Number of prefetches issued normalized to prefetches issued by phase preftcher

7

5 Conclusion and Future Work
This project demonstrates the potential of program phase based prefether design. A base
prefetcher is setup in gem5. Various optimizations can be applied and tested there to get a
better performing final prefetcher. Secondly, some server type workloads need to be tested so
that comparison with other recent published work can also be made.

References
[1] A. Kolli, A. Saidi, and T. F. Wenisch, “Rdip: return-address-stack directed instruction

prefetching,” in Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 260–271, 2013.

[2] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 152–162,
ACM, 2011.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, et al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1–7, May 2011.

8

	Introduction
	Analysis of Miss Address Traces
	Implementation of Prefetcher in gem5
	Results of few benchmarks
	Conclusion and Future Work

